Formation of globules and aggregates of DNA chains in DNA/polyethylene glycol/monovalent salt aqueous solutions.

نویسندگان

  • H Kawakita
  • T Uneyama
  • M Kojima
  • K Morishima
  • Y Masubuchi
  • H Watanabe
چکیده

It has been known that giant DNA shows structural transitions in aqueous solutions under the existence of counterions and other polymers. However, the mechanism of these transitions has not been fully understood. In this study, we directly observed structures of probed (dye-labeled), dilute DNA chains in unprobed DNA/polyethylene glycol (PEG)/monovalent salt (NaCl) aqueous solutions with fluorescent microscopy to examine this mechanism. Specifically, we varied the PEG molecular weight and salt concentration to investigate the effect of competition between the depletion and electrostatic interactions on the coil-globule transition and the aggregate formation. It was found that the globules coexist with the aggregates when the unprobed DNA chains have a concentration higher than their overlap concentration. We discuss the stability of the observed structures on the basis of a free energy model incorporating the attractive depletion energy, the repulsive electrostatic energy, and the chain bending energy. This model suggested that both of the globules and aggregates are more stable than the random coil at high salt concentrations/under existence of PEG and the transition occurs when the depletion interaction overwhelms the electrostatic interaction. However, the coexistence of the globule and aggregate was not deduced from the thermodynamic model, suggesting a nonequilibrium aspect of the DNA solution and metastabilities of these structures. Thus, the population ratio of globules and aggregates was also analyzed on the basis of a kinetic model. The analysis suggested that the depletion interaction dominates this ratio, rationalizing the coexistence of globules and aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA strand exchange catalyzed by molecular crowding in PEG solutions.

DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology.

متن کامل

The effect of mono- and divalent cations on Tetrahymena thermophila telomeric repeat fragment. A photon correlation spectroscopy study.

The structure of the Tetrahymena thermophila telomeric sequence d(TGGGGT)(4) was studied by photon correlation spectroscopy (PCS) in aqueous solution in the presence of NaCl, KCl and SrCl(2). The sample studied was polydisperse in all conditions studied. Translational diffusion coefficients D(T) describing the diffusion modes observed were determined. On the basis of a comparison between the ex...

متن کامل

Packing nanomechanics of viral genomes.

We investigate the osmotic equilibrium between a bulk polyethylene glycol (PEG) solution and DNA tightly packed in a spherical capsid. We base our analysis on the equations of thermodynamic equilibrium in terms of osmotic pressure. The equality between external osmotic pressure of PEG and osmotic pressure of tightly packed DNA gives us the DNA encapsidation curves. In this way we directly conne...

متن کامل

The Effect of pH on the Liquid-liquid Equilibrium for a System Containing Polyethylene Glycol Di-methyl Ether and Tri-potassium Citrate and its Application for Acetaminophen Separation

In this work liquid-liquid equilibrium for aqueous two phase system composed of polyethylene glycol di-methyl ether and tri-potassium citrate at different medium pH values (6.00, 7.00 and 8.00) and 298.15 K was studied. The obtained results show that two phase area expanded with an increasing of pH values. The performances of the Merchuk and semi-empirical equations were tested in correlating t...

متن کامل

Preparation, Physicochemical Characterization and Biological Evaluation of Some Hesperidin Metal Complexes

AbstractThe ability of hesperidin (HP) to form complexes with five metals; cobalt, nickel, zinc, calcium and magnesium was investigated. The complexation was studied using U.V spectroscopic titration, in methanol as well as aqueous buffer solutions (physiological conditions). Potential complexes were studied by IR and NMR spectroscopy, melting point and their solubility were also evaluated. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 9  شماره 

صفحات  -

تاریخ انتشار 2009